# Describe the graph

This is a short lesson where students create a graph in Quadrant I and then interpret the graph into a story. This lesson allows the student who enjoys writing to "go wild" in math. It will be difficult for some students to think in the abstract way this lesson requires, but with teacher guidance all students should experience success.

### Standards & Objectives

CCSS.Math.Content.6.EE.A.2
Write, read, and evaluate expressions in which letters stand for numbers.
CCSS.Math.Content.6.EE.B.7
Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in which p, q and x are all...
CCSS.Math.Content.6.EE.B.8
Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. Recognize that...
CCSS.Math.Content.6.EE.C.9
Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one...
CCSS.Math.Content.7.RP.A.2
Recognize and represent proportional relationships between quantities.
CCSS.Math.Content.8.EE.B.5
Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships...
CCSS.Math.Content.8.EE.B.6
Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive...
CCSS.Math.Content.8.F.A.2
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal...
CCSS.Math.Content.8.F.A.3
Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For...
CCSS.Math.Content.8.SP.A.1
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe...
CCSS.Math.Content.8.SP.A.3
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For...
GLE 0506.3.2
Develop and apply the concept of variable.
GLE 0506.3.3
Understand and apply the substitution property.
GLE 0606.1.1
Use mathematical language, symbols, and definitions while developing mathematical reasoning.
GLE 0606.3.2
Interpret and represent algebraic relationships with variables in expressions, simple equations and inequalities.
GLE 0606.3.4
Use expressions, equations and formulas to solve problems.
GLE 0606.3.5
Use multiple representations including symbolic algebra to model and/or solve contextual problems that involve linear relationships.
GLE 0706.2.3
Develop an understanding of and apply proportionality.
GLE 0706.3.2
Understand and compare various representations of relations and functions.
GLE 0706.3.5
Understand and graph proportional relationships.
GLE 0706.3.6
Conceptualize the meanings of slope using various interpretations, representations, and contexts.
GLE 0706.3.7
Use mathematical models involving linear equations to analyze real-world phenomena.
GLE 0806.3.4
Translate among verbal, tabular, graphical and algebraic representations of linear functions.
GLE 0806.5.2
Select, create, and use appropriate graphical representations of data (including scatterplots with lines of best fit) to make and test conjectures.
SPI 0506.3.1
Evaluate algebraic expressions involving decimals and fractions using order of operations.
SPI 0506.3.2
Use variables appropriately to represent numbers whose values are not yet known.
SPI 0506.3.3
Find the unknown in single-step equations involving fractions and mixed numbers.
SPI 0606.3.1
Represent on a number line the solution of a linear inequality.
SPI 0606.3.3
Write equations that correspond to given situations or represent a given mathematical relationship.
SPI 0606.3.5
Translate between verbal expressions/sentences and algebraic expressions/equations.
SPI 0706.1.3
Recognize whether information given in a table, graph, or formula suggests a directly proportional, linear, inversely proportional, or other nonlinear relationship.
SPI 0706.3.1
Evaluate algebraic expressions involving rational values for coefficients and/or variables.
SPI 0706.3.4
Interpret the slope of a line as a unit rate given the graph of a proportional relationship.
SPI 0706.3.5
Represent proportional relationships with equations, tables and graphs.
SPI 0806.1.3
Calculates rates involving cost per unit to determine the best buy.
SPI 0806.3.4
Translate between various representations of a linear function.
SPI 0806.3.7
Identify, compare and contrast functions as linear or nonlinear.
SPI 0806.5.3
Generalize the relationship between two sets of data using scatterplots and lines of best fit.
TSS.Math.6.EE.A.2
Write, read, and evaluate expressions in which variables stand for numbers.
TSS.Math.6.EE.B.7
Solve real-world and mathematical problems by writing and solving onestep equations of the form x + p = q and px = q for cases in which p, q, and x are all...
TSS.Math.6.EE.B.8
Interpret and write an inequality of the form x > c or x
TSS.Math.6.EE.C.9
Use variables to represent two quantities in a real-world problem that change in relationship to one another.
TSS.Math.7.RP.A.2
Recognize and represent proportional relationships between quantities.
TSS.Math.8.EE.B.5
Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in...
TSS.Math.8.EE.B.6
Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; know and derive...
TSS.Math.8.F.A.2
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
TSS.Math.8.F.A.3
Know and interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
TSS.Math.8.SP.A.1
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such...
TSS.Math.8.SP.A.3
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a...

Alignment of this item to academic standards is based on recommendations from content creators, resource curators, and visitors to this website. It is the responsibility of each educator to verify that the materials are appropriate for your content area, aligned to current academic standards, and will be beneficial to your specific students.

Learning objectives:

Learning Objectives

Students will:

• Plot points given its coordinate.
• Create a line plot.
• Describe the line plot in a real life context specifically hitting on the points plotted.
Essential and guiding questions:

Questions for Students:

• How do the coordinates of the point locate that point on the coordinate grid?
• How do the coordinates of the points link to the story that you wrote?
• What portion of the coordinate plane are we working in?
• What is another way of telling someone to get to the next point without naming it by its ordered pair?

### Lesson Variations

Blooms taxonomy level:
Understanding
Extension suggestions:

Extensions:

• Once this lesson is complete you can then use is in the opposite direction. Copy the stories that were written being sure not to include names. Randomly pass them out to students along with a sheet of large graph paper. Have students create the graph from the story being sure to include a title and labels for the axis.
• Have students draw numbers from two bags. One bag should contain the integers from 0 to 10 (possible x-values). The second bag should contain the integers from -10 to 10 (possible y-values). Have students repeat the lesson.
•