Ella's mother is baking 4 pans of brownies for a birthday party. Each pan can be divided into 16 squares of brownies. Ella wants to share them equally with her friends at the party. There are 8 children altogether. How many squares of brownies will each child get? Draw a picture and write an equation that shows how you solved the problem.

Teacher Notes:

Models used in solution paths show different interpretations of multiplication and division. It is possible for a student to use any combination of models shown below.

Common Core State Standards for Mathematical Content Represent and solve problems involving multiplication and division.
3.OA.A. 1 Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.
3.OA.A. 2 Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.
3.OA.A. 3 Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
3.OA.B.5. Apply properties of operations as strategies to multiply and divide. 2 Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times$ $2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=40+16=56$. (Distributive property.)

Essential Understandings

- Multiplication can be used to find the total number of objects when there are a specific number of groups with the same number of objects.
- When multiplying two factors, either factor can be partitioned or both. Example: $4 \times 16=4 \times(10+6)$ or $(2+2) \times 16$
- Division can be used to find how many equal groups (measurement - repeated subtraction) or how many are in each group (partitive sharing)
- Multiplication and division have an inverse relationship and can be used to find division or multiplication facts

Explore Phase

Possible Solution Paths

Assessing and Advancing Questions

Equal Groups or Arrays:

Students may find the total number of brownies by thinking about 4 groups of 16 brownies and using the equation, $4 \times 16=64$ and then find the number of brownies each child will get by thinking about $\mathbf{6 4}$ brownies divided into groups of $8,64 \div 8=8$. Each child will get 8 brownies when shared equally.

4 groups of 16 or $4 \times 16=64$

64 is divided into groups of 8 or $64 \div 8=8$

Assessing Questions:

- Why did you decide to group the brownies by 16 and 8 ?
- What does each number represent in your equation? (Ask students to relate numbers back to the model.)
- How does an array show equal groups?

Advancing Questions:

- Why did you decide to write these equations?
- What is the relationship between multiplication and division?
- What do you notice about the product and the dividend? Why are they the same?
- What would happen if you turned your array sideways?
- How can you make a connection between the two models (equal sized groups and arrays)?

Equal Sharing for Each Pan

Students may think about sharing each pan of brownies with 8 children, $16 \div 8=2$ so each child will receive 2 brownies from one pan. Then the student may realize that there are 4 pans of brownies so the student decides to multiply by 4 pans to find the total number of brownies each child will receive at the party, $2 \times 4=8$.

$16 \div 8=2 \quad 16 \div 8=2 \quad 16 \div 8=2 \quad 16 \div 8=2$
2 brownie squares $\times 4$ pans $=8$ brownie squares
Each child will receive 8 brownie squares.
Repeated Addition and Subtraction
Students may use repeated addition to find the total number of brownie squares: $16+16+16+16=64$ or $4+4+4+4+4+4+4$ $+4+4+4+4+4+4+4+4+4=64$

Students may use repeated subtraction to find the number of brownie squares each child will get when shared equally with 8 children.

Assessing Questions:

- Why did you decide to group the brownies by 2 for each pan?
- What does each number represent in your equation? (Ask students to relate numbers back to the model.)

Advancing Questions:

- Why did you decide to divide first and then multiply?
- Does this always work on all problems? Explain
- What is the relationship between multiplication and division?
- How is this model different or the same as the previous model?

Assessing Questions:

- Why did you choose to add and subtract?
- How many times did you add and subtract? Why?
- Can you explain how addition and subtraction equations relate to the model? Explain

Advancing Questions:

- What is the relationship between addition and multiplication?
- How can you write a multiplication equation for the addition sentence?
- What is the relationship between subtraction and division?
- How can you write a division equation for the subtraction problem?

$$
\begin{aligned}
& 64-8=56 \\
& 56-8=48 \\
& 48-8=40 \\
& 40-8=32 \\
& 32-8=24 \\
& 24-8=16 \\
& 16-8=8
\end{aligned}
$$

8 brownie squares for each child at the party

Area Model

Students may use the distributive property to solve 4×16 by thinking about $4(10+6)=40+24=64$

$4 \times 10=404 \times 6=24$

Assessing Questions:

- How is breaking the rectangle apart helpful in solving the problem?
- Why did you multiply to find the total number of brownie squares?
- How does your equation relate to the model?

Advancing Questions:

- Is it possible to partition (break apart) either factor or both? Explain your thinking.
- How can you make a connection between the two models (area model and base-ten model)?

Then solve $64 \div 8=8$ by using the area model $8 \times 8=64$ or partition 64 base-ten blocks into groups of 8 .

Students may use multiplication and division equations to solve the problem.
$4 \times 16=64$
$64 \div 8=8$
Each child will receive 8 brownie squares at the birthday party.

Assessing Questions:

- Why did you decide to multiply and then divide?
- What does each number represent in your equation?

Advancing Questions:

- How can you solve the problem another way?
- How can you draw a model to match your equations?

Possible Student Misconceptions

Students may not realize there are 4 pans of brownies and each pan has 16 brownie squares

Students may not realize this is a two-step problem and only find the total number of brownie squares

Assessing Questions:

- What is the question you are trying to answer?
- How can you find out how many brownies are in 4 pans?

Advancing Questions:

- Does your answer make sense?
- What do you need to do after you find the total number of brownie squares?

Entry/Extensions	Assessing and Advancing Questions
If students can't get started....	Assessing Questions: - How can you state the problem in your own words? - What are you trying to find or do? - What information do you need to solve the problem? - What model could you draw to help you solve the problem? Advancing Questions:

