## Task: Volume of a Cube

1. The area of a square is $16 a^{3} b^{5}$.

a) Come up with two different expressions for the length of one side of the square.
b) Explain how you know your expressions are equivalent.
2. The volume of a cube is $64 a^{4} b^{3} c^{7}$.

a) Write an expression for the length of one edge of the cube.
b) Find a way to show that your answer is correct
c) Come up with an expression for the surface area of the cube.

## Teacher Notes:

This is a different approach to teaching rational exponents and the concept of square and cube roots of algebraic expressions.
This is a great way for students to visualize the concept of $1 / 2$ and $1 / 3$ power

## Common Core State Standards for Mathematical Content

Common Core State Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

## Essential Understandings

Some representations of a function may be more useful than others, depending on the context.

| Explore Phase | Assessing and Advancing Questions |
| :--- | :--- |
| Possible Solution Paths | Assessing - If I know the area of a square, how do I <br> find the length of one side? <br> Why did you choose these 2 representations? |
| 1a) $\sqrt{16 a^{3} b^{5}}$ <br> or <br> $4 a b^{2} \sqrt{a b}$ <br> or <br> $4 a^{3 / 2} b^{5 / 2}$ | Advancing- Would there be a third representation <br> that would also work? |
| 1b) $\sqrt{16 a^{3} b^{5}}$ <br> or <br> $4 a b^{2} \sqrt{a b}$ <br> or <br> $4 a^{3 / 2} b^{5 / 2}$ | Assessing - What approach did you take to show <br> that your expressions are equivalent? Why? |
| Advancing- Is there a third expression that you |  |
| could show is also equivalent? |  |


| 2a) $4 a^{4 / 3} b c^{7 / 3}$ <br> or $4 a b c^{2} \sqrt[3]{a b}$ | Assessing - If I know the volume of a cube, how do I find the length of one edge? <br> How did you come up with your answer? <br> Advancing- Is there another representation that would also work? |
| :---: | :---: |
| 2b) $\left(4 a^{4 / 3} b c^{7 / 3}\right)^{3}=64 a^{4} b^{3} c^{7}$ <br> Or $\left(4 a^{4 / 3} b c^{7 / 3}\right)\left(4 a^{4 / 3} b c^{7 / 3}\right)\left(4 a^{4 / 3} b c^{7 / 3}\right)=64 a^{4} b^{3} c^{7}$ | Assessing - How did you know to take your answer and raise it to the third power? <br> Advancing- Is there another way to show your answer is correct, other than what you did? |


| $\begin{array}{l}\text { 2c) } 6\left(4 a^{4 / 3} \mathrm{bc}^{7 / 3}\right)^{2} \\ \text { Or } \\ 96 a^{8 / 3} b^{2} c^{14 / 3}\end{array}$ | $\begin{array}{l}\text { Assessing - How can you find the surface area of a } \\ \text { cube? }\end{array}$ |
| :--- | :--- |
| Advancing- What if the original coefficient had been |  |
| a non-perfect cube such as 40? How would you |  |
| write your answer to part c? |  |$\}$

\(\left.$$
\begin{array}{|l|l|}\hline \text { Entry/Extensions } & \begin{array}{l}\text { Advancing - How can we use the formula to work } \\
\text { this out? }\end{array} \\
\hline \text { If students can't get started.... } & \begin{array}{l}\text { Assessing and Advancing Questions } \\
\hline\end{array} \\
\begin{array}{l}\text { What is the length of one side? What if the volume } \\
\text { of the cube is 125? What is length of one edge? }\end{array} \\
\hline\end{array}
$$ \begin{array}{l}Advancing- How can we use this information to help <br>

us answer the questions?\end{array}\right\}\)| Assessing- Can you find a second way to write the |
| :--- |
| expression for the edge of the cube and show that it |
| is equivalent to your answer to 2b? |

$\qquad$

1. The area of a square is $16 a^{3} b^{5}$.

a) Come up with two different expressions for the length of one side of the square.
b) Explain how you know your expressions are equivalent.
2. The volume of a cube is $64 a^{4} b^{3} c^{7}$.

c) Write an expression for the length of one edge of the cube.
d) Find a way to show that your answer is correct.

Come up with an expression for the surface area of the cube.

