# A Meter of Candy

In this series of 3 hands-on activities, students develop and reinforce their understanding of hundredths as fractions, decimals, and percentages. Students explore using candy pieces as they physically make and connect a set/linear model to area models. This site provides a lesson plan with two activities that demonstrate the relationship between fractions, decimals, and percents. The second activity then builds upon the first activity by placing the information into an area and linear model. There are printable materials available to compliment the lesson. This lesson incorporates many areas of mathematics and uses a wide variety of vocabulary. There is also a journal extension activity that can be used to encourage the students to communicate mathematically. An assessment activity is also included with the lesson.This activity can be extended into 5th grade.

### Standards & Objectives

CCSS.Math.Content.4.NF.A.1
Explain why a fraction a/b is equivalent to a fraction (n x a)/(n x b) by using visual fraction models, with attention to how the number and size...
CCSS.Math.Content.4.NF.A.2
Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to...
CCSS.Math.Content.4.NF.C.5
Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective...
CCSS.Math.Content.4.NF.C.6
Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62...
GLE 0006.4.1
Interpret and describe the physical world with geometric ideas and vocabulary.
GLE 0306.2.6
Use various strategies and models to compare and order fractions and identify equivalent fractions.
GLE 0306.2.7
Add and subtract fractions with like denominators using various models.
GLE 0406.2.4
Understand and use the connections between fractions and decimals.
GLE 0406.2.5
Add and subtract fractions with like and unlike denominators.
SPI 0306.2.10
Identify equivalent fractions given by various representations.
SPI 0406.2.5
Generate equivalent forms of common fractions and decimals and use them to compare size.
SPI 0406.2.6
Use the symbols and = to compare common fractions and decimals in both increasing and decreasing order.
SPI 0506.2.7
Recognize equivalent representations for the same number.
TSS.Math.4.NF.A.1
Explain why a fraction a/b is equivalent to a fraction (axn)/(bxn) or (a/n)/(b/n) by using visual fraction models, with attention to how the number and size...
TSS.Math.4.NF.A.2
Compare two fractions with different numerators and different denominators by creating common denominators or common numerators or by comparing to a...
TSS.Math.4.NF.C.5
Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective...
TSS.Math.4.NF.C.6
Read and write decimal notation for fractions with denominators 10 or 100. Locate these decimals on a number line.

Alignment of this item to academic standards is based on recommendations from content creators, resource curators, and visitors to this website. It is the responsibility of each educator to verify that the materials are appropriate for your content area, aligned to current academic standards, and will be beneficial to your specific students.

Learning objectives:

Learning Objectives:

Students will:

• Reinforce understanding of the connections between fractions, decimals, and percentages.
• Connect the set and linear model to area models (rectangular and circular).

NCTM Standards and Expectations:

• Use models, benchmarks, and equivalent forms to judge the size of fractions.
• Develop understanding of fractions as parts of unit wholes, as parts of a collection, as locations on number lines, and as divisions of whole numbers.

### Lesson Variations

Blooms taxonomy level:
Applying
Differentiation suggestions:

Extensions :

• Compare the percentages of candy colors between groups. Notice similarities, differences, or trends. For practice with addition and subtraction of decimals, ask students to complete some tasks. For example, pose these problems: If there are 32 red and 11 green candies, what is the percent difference? [0.32 – 0.11 = 0.21] Choose two pie graphs and find the sum of their orange candies. Tasks can also challenge higher-level students. Adding like colors from different groups may lead to sums greater than 1, leading students to understand the concept of a whole in fractions.
• Have students collection pie graphs clipped from newspapers, photocopied from encyclopedias, and printed from the Internet. Have students examine the graphs, interpret them, and share their results.
• Use technology to create pie graphs. Use either the Circle Grapher Tool or the graphing function in Excel. In the latter software, students may also try different graphical models to represent 100% of their candy.

Contributors: